• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Physics Everywhere

Physics Everywhere

Learn Physics Easy Way

  • Cosmos
  • News
  • Earth
  • Concep of Physics

Black holes gain new powers when they spin fast enough

December 11, 2020 by irfanguru Leave a Comment


The conflict between relativity and quantum theory leads to the firewall paradox. Credit: Jeremy Perkins / Unsplash

General relativity is a profoundly complex mathematical theory, but its description of black holes is amazingly simple. A stable black hole can be described by just three properties: its mass, its electric charge and its rotation or spin. Since black holes aren’t likely to have much charge, it really takes just two properties. If you know a black hole’s mass and spin, you know all there is to know about the black hole.


This property is often summarized as the no-hair theorem. Specifically, the theorem asserts that once matter falls into a black hole, the only characteristic that remains is mass. You could make a black hole out of a sun’s worth of hydrogen, chairs or those old copies of National Geographic from Grandma’s attic, and there would be no difference. Mass is mass as far as general relativity is concerned. In every case, the event horizon of a black hole is perfectly smooth, with no extra features. As Jacob Bekenstein said, “black holes have no hair.”

But with all its predictive power, general relativity has a problem with quantum theory. This is particularly true with black holes. If the no-hair theorem is correct, the information within an object is destroyed when it crosses the event horizon. Quantum theory says that information can never be destroyed. So the valid theory of gravity is contradicted by the valid theory of the quanta. This leads to problems such as the firewall paradox, which can’t decide whether an event horizon should be hot or cold.

Black holes gain new powers when they spin fast enough
The temperature within a room is an example of a scalar field. Credit: Lucas Vieira

Several theories have been proposed to solve this contradiction, often involving extensions to relativity. The difference between standard relativity and these modified theories can only be seen in extreme situations, making them difficult to study observationally. But a new paper in Physical Review Letters shows how they might be studied through the spin of a black hole.

Many modified relativity theories have an extra parameter not seen in the standard theory. Known as a massless scalar field, it allows Einstein’s model to connect with quantum theory in a way that isn’t contradictory. In this new work, the team looked at how such a scalar field connects to the rotation of a black hole. They found that at low spins, a modified black hole is indistinguishable from the standard model, but at high rotations, the scalar field allows a black hole to have extra features. In other words, in these alternative models, rapidly rotating black holes can have hair.

The hairy aspects of rotating black holes would only be seen near the event horizon itself, but they would also affect merging black holes. As the authors point out, future gravitational wave observatories should be able to use rapidly rotating black holes to determine whether an alternative to general relativity is valid.

Einstein’s theory of general relativity has passed every observational challenge so far, but it will likely break down in the most extreme environments of the universe. Studies such as this show how we might be able to discover the theory that comes next.


Seeking proof for the no-hair theorem


More information:
Alexandru Dima et al. Spin-Induced Black Hole Spontaneous Scalarization, Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.125.231101

Provided by
Universe Today

Citation:
Black holes gain new powers when they spin fast enough (2020, December 11)
retrieved 11 December 2020
from https://phys.org/news/2020-12-black-holes-gain-powers-fast.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Filed Under: News

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

More to See

We’ve made progress to curb global emissions, but it’s a fraction of what’s needed

March 4, 2021 By irfanguru

Why more people than ever are living alone and what it means for the environment

March 4, 2021 By irfanguru

Great mountains grow in a cycle of rising and falling

March 4, 2021 By irfanguru

New study improves marine climate change evidence base

March 4, 2021 By irfanguru

Your favorite fishing stream may be at high risk from climate change – here’s how to tell

March 4, 2021 By irfanguru

Recent Posts

  • Apparent Atlantic warming cycle likely an artifact of climate forcing
  • Data will characterize planetary atmosphere models
  • ICESat-2 satellite reveals shape, depth of Antarctic ice shelf fractures
  • Want to cut emissions that cause climate change? Tax carbon
  • Hubble solves mystery of monster star’s dimming
  • Microplastics found in 100% of sampled Pennsylvania waterways, study shows
  • How governments and companies should listen to the people on climate change
  • Revisiting the Kobe earthquake and the variations of atmospheric radon concentration
  • Study uncovers how big droughts in the Greater Mekong trigger carbon dioxide emission bursts
  • 17% of food production globally wasted, UN report estimates

Footer

Categories

  • Cosmos
  • News
  • Earth
  • Concep of Physics

Recent

  • Apparent Atlantic warming cycle likely an artifact of climate forcing
  • Data will characterize planetary atmosphere models
  • ICESat-2 satellite reveals shape, depth of Antarctic ice shelf fractures
  • Want to cut emissions that cause climate change? Tax carbon
  • Hubble solves mystery of monster star’s dimming

Search

Affiliate Links

  • Become An Affiliate of Edugram
  • Edugram Assignments
  • Edugram Writer

Copyright © 2021 · Magazine Pro on Genesis Framework · WordPress · Log in

Go to mobile version