• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Physics Everywhere

Physics Everywhere

Learn Physics Easy Way

  • Cosmos
  • News
  • Earth
  • Concep of Physics

What can we learn from mathematical modeling

October 8, 2020 by irfanguru Leave a Comment


Examples of pressures (P) and flow rates (Q) throughout the human body: on Earth (blue) and spaceflight (red) configurations. Credit: Politecnico di Torino

Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology and push scientific boundaries further. A key aspect of long-term human spaceflight is the physiological response and consequent microgravity (0G) adaptation, which has all the features of accelerated aging involving almost every body system: muscle atrophy and bone loss, onset of balance and coordination problems, loss of functional capacity of the cardiovascular system.


Research published recently in npj Microgravity and conducted by Caterina Gallo, Luca Ridolfi and Stefania Scarsoglio shows that human spaceflight reduces exercise tolerance and ages astronauts’ heart.

The study is based on a mathematical model which allowed to investigate some spaceflight mechanisms inducing cardiovascular deconditioning, that is the adaptation of the cardiovascular system to a less demanding environment.

Understanding 0G configuration is crucial to ensure the full health and well-being of astronauts in view of the now imminent missions to the Moon and Mars. Moreover, since spaceflight deconditioning has features similar to accelerated aging, gravitational physiology may lead to useful insights to delay or prevent the modern lifestyle medical disorders related with living longer.

The proposed study compared the cardiovascular response in microgravity (0G) conditions with what happens on Earth: several hemodynamic parameters—such as cardiac work, oxygen consumption and contractility indexes, as well as arterial pressure—were reduced. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary-venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level.

“Present findings,” professor Scarsoglio observes “are useful to design future long-term spaceflights, individuate optimal countermeasures and understand the state of health of astronauts when prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing) is required.”


What happens to our muscles during spaceflight and when living on Mars?


More information:
Caterina Gallo et al. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling, npj Microgravity (2020). DOI: 10.1038/s41526-020-00117-5

Provided by
Politecnico di Torino

Citation:
The human heart in space: What can we learn from mathematical modeling (2020, October 8)
retrieved 8 October 2020
from https://phys.org/news/2020-10-human-heart-space-mathematical.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Filed Under: News

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

More to See

NASA’s new Mars rover hits dusty red road, 1st trip 21 feet

March 6, 2021 By irfanguru

Study marks major milestone for Louisiana coastal plan

March 6, 2021 By irfanguru

Quake-ravaged part of Croatia sees gaping sinkholes emerge

March 5, 2021 By irfanguru

How do forests function in persistent organic pollutant cycling?

March 5, 2021 By irfanguru

Southwest Iceland is shaking – and may be about to erupt

March 5, 2021 By irfanguru

Recent Posts

  • Etna keeps up its spectacular explosions; ash rains on towns
  • Study marks major milestone for Louisiana coastal plan
  • NASA’s new Mars rover hits dusty red road, 1st trip 21 feet
  • Small volcanic lakes tapping giant underground reservoirs
  • Coastal changes worsen nuisance flooding on many US shorelines, study finds
  • Comet Catalina suggests comets delivered carbon to rocky planets
  • Making sense of commotion under the ocean to locate tremors near deep-sea faults
  • Sixth mirror cast for Giant Magellan Telescope
  • New tool finds and fingerprints previously undetected PFAS compounds in watersheds on Cape Cod
  • Earth’s position and orbit spurred ancient marine life extinction

Footer

Categories

  • Cosmos
  • News
  • Earth
  • Concep of Physics

Recent

  • Etna keeps up its spectacular explosions; ash rains on towns
  • Study marks major milestone for Louisiana coastal plan
  • NASA’s new Mars rover hits dusty red road, 1st trip 21 feet
  • Small volcanic lakes tapping giant underground reservoirs
  • Coastal changes worsen nuisance flooding on many US shorelines, study finds

Search

Affiliate Links

  • Become An Affiliate of Edugram
  • Edugram Assignments
  • Edugram Writer

Copyright © 2021 · Magazine Pro on Genesis Framework · WordPress · Log in

Go to mobile version